COMPARING EFFECTIVENESS OF MACHINE LEARNING

VERSUS LOGIC-BASED ALGORITHMS IN TARGET DETECTION
Ang Jin Seng Eugene' , Lim Zhi Wen'!, Angel Chia?, Zhan Yan Jun?
"Temasek Junior College (Secondary), 22 Bedok South Road, Singapore 469278
2DSO National Laboratories, 12 Science Park Drive, Singapore 118225

Abstract

With the rising popularity of machine learning to solve various problems and tasks, this paper
aims to see the effectiveness of a machine learning neural network to accurately detect the
number of targets in a range-doppler (RD) map, and compare its performance with a traditional
logic-based thresholding algorithm. To do this, we programmed a convolutional neural network
to classify the number of targets of different RD maps. We also programmed a logic-based
algorithm to box up the targets on the RD map and output the number of targets. Thereafter, we
compared the accuracy of the neural network with the logic-based algorithm and found that the
accuracy of the neural network tended to be higher than the accuracy of the logic-based
algorithm. Thus, we concluded that applying neural networks to target detection in radar signal
processing could prove to have a higher performance than traditional logic-based algorithms.

1 Introduction

Machine learning and Artificial Intelligence has become the buzzword in the field of science and
technology due to its ability to train and teach a machine to imitate intelligent human behaviour.
Our project aims to evaluate and compare the effectiveness of a machine learning model as
compared to a traditional logic-based algorithm for the target detection portion of radar signal
processing.

The machine learning model architecture used in this project is a convolutional neural network,
while the logic-based algorithm utilises adaptive thresholding to determine targets.
Convolutional neural networks (CNNs) are often used for image classification. By recognizing
valuable features, CNNs can identify such features, and classify different images into different
classes.

As our project would investigate the effectiveness of the two algorithms, this paper could verify
whether machine learning could be better than logic-based algorithms in cases of target
detection, which this paper will cover, as well as classification, and perhaps parameter
estimation.

As a well designed machine learning model is able to learn and improve over the number of
epochs trained, we believe that the convolutional neural network would have a higher accuracy
compared to a well designed logic-based algorithm, which would remain at the same accuracy,
without tweaking of the algorithm.

2 Methodology

2.1 Data Set Preparation

For our project, the data used was obtained from Github, then accessed and downloaded through
a shared Google Drive containing the raw radar data and ground truth data. The data collected is
of vehicles and pedestrians on the road and on the side of the road respectively.



The details of the radar configuration used to capture the data is shown below, in Table 2.1.1.

Table 2.1.1: Radar Parameters [1]

Designed Frequency 76.8 Hz
Config Frequency 77 Hz
Range Size 256
Maximum Range 50 m
Doppler Size 256
Azimuth Size 256
Range Resolution 0.195 m/bin
Angular Resolution 0.00614 radian/bin
Velocity Resolution 0.420 (m/s)/bin

The raw radar data was used to plot range velocity maps used as the input data in our project.

With our focus being correctly detecting the number of targets, the ground truth for the correct
number of targets was taken as the number of items in the category “classes”.

For this dataset, there are 6 different types of targets, namely person, bicycle, car, motorcycle,
bus, truck. An example of the angle-range and range-Doppler maps would be shown below.
However, as our project focuses more on the RD maps for detection, we did not use the
angle-range but only the range-Doppler maps. Fig 2.1.1 shows an example of the angle range

map and RD map.

RD

range (m)

0 |
13 65 0 65 13
velocity (my/s)

Fig 2.1.1: Exampl

range (m)

0
angle (degrees)

45 90

f Range-Doppler and Angle-Range Maps [1]




The data that we had was split into training data and validation data, as well as test data, where
the split of data, as well as the number of samples in each dataset will be detailed in Table 2.1.2.
Table 2.1.3 will then show the number of samples in each class, where the percentage split
between the classes is consistent throughout the 3 datasets.

Table 2.1.2: Dataset Split

Train Validation Test Total
Percentage Split 71.4% (5/7) 14.3% (1/7) 14.3% (1/7) 100% (7/7)
Number of samples 597 117 117 831
Table 2.1.3: Number of Samples in Each Class
Number 1 2 3 4 5 6 7
of targets
Number 63 189 248 179 114 31 7
of
samples

For the machine learning code, the ground truth was one hot encoded as a label to enable the
machine to output the number of targets. An example of a label that is in class 0 (1 target in the
scene) in a numpy array format is shown below.

[1.0.0.0.0.0.0.]

This would be inputted into the machine as a “label” for the image, encoding the number of
targets in that image, in the format of a numpy array, where using the same example as the one
above, it would look like this: [1. 0. 0. 0. 0. 0. 0]. The filenames and the labels were then put into
a .csv file to facilitate the creation of the dataset.

2.2 Logic-based Code

To process our images, we have chosen to grayscale the RD maps, to reduce the number of
colour channels to 1, rather than 3, in the case of RGB. This would result in pixels having values
between 0-255. This would allow us to reduce the amount of computational power needed to
perform thresholding, increasing the efficiency of the algorithm.

With our processed images, most contain a dark line in the middle of the image, due to the
presence of stationary clutter (e.g. buildings, road signs) in the scene, which could have
negatively affected our results, especially with the nature of logic-based programming being
unable to learn trends and better identify targets, the clutter being stronger in the RD map would
result in less accurate results. Hence, we changed the pixel values of the clutter to 255 so that it
would not be detected as a target. Both the RD map with clutter, and the RD map with the
removed dark line.



s el e e

— =
—— e

Fig 2.2.1: RD Map with Dark Line Fig 2.2.2: RD Map with “Removed” Dark Line

For logic-based thresholding, Open Source Computer Vision Library (CV) offers 2 types of
in-built thresholding, namely simple thresholding or adaptive thresholding. Adaptive
thresholding in CV further offers adaptive mean thresholding or adaptive gaussian thresholding.
Adaptive mean thresholding would take the mean of neighbour pixel values minus a user defined
constant. Adaptive gaussian thresholding refers to when the threshold value is a gaussian
weighted sum of the neighbouring pixel values minus a user defined constant. A more detailed
diagram for both adaptive mean and adaptive gaussian would be shown below, in Table 2.2.1.

Table 2.2.1:Details on Adaptive Threshold Methods [2]
Adaptive method Method used to obtain threshold value

Adaptive threshold mean the threshold value for a pixel is determined by taking the mean of
the pixel values in a window centred around said pixel minus a
user-defined constant

Adaptive threshold Gaussian | the threshold value for a pixel is determined by taking is a weighted
sum (cross-correlation with a Gaussian window) of the pixel values
in a window centred around said pixel minus a user-defined constant

Global Thresholding The threshold value is a user defined constant




. Mean percentage accuracy of different thresholding methods

30

Percentage accuracy/%

Gaussian Mean Global

Fig 2.2.3: Bar Graph Displaying Mean Percentage Accuracy of Different Thresholding Methods

The percentage accuracy of each thresholding method is calculated by taking the average
percentage accuracy across all images. The percentage accuracy of each image is the number of
targets detected in the image over the total number of targets in the scene.

2.3 Machine Learning

To facilitate the identification of the number of targets in the image, we built a convolutional
neural network of about 880 thousand programmable params, where we used the “LeakyReLU”
activation function, which allows us to prevent dying ‘ReLU’, where the ReLU neuron will
output zero, when the input is of negative values. We also added a training checkpoint function,
to ensure that the model is not over-fitted, by saving the model weights when the model has the
highest accuracy in the validation set. This allows for more accurate results when the model is
tested. We had also included 2 dropout layers, to prevent overfitting. Below, Fig 2.3.1 shows a
summary of the model architecture that we used for training.

Layer (type) Output Shape Param #
rescaling (Rescaling) (None, 349, 72, 3) e
conv2d (Conv2D) (None, 339, 62, 32) 11648
max_pooling2d (MaxPooling2D (None, 169, 31, 32) 2]

)

dropout (Dropout) (None, 169, 31, 32) 2]
convad_1 (Conv2D}) {None, 159, 21, 16) 61968
max_pooling2d_1 (MaxPooling (None, 79, 10, 16) e

20)

dropout_1 (Dropout) (None, 79, 18, 16) 2]
flatten (Flatten) (None, 12648) 2]
dense (Dense) {None, &4) 8689824
dense 1 (Dense) {None, 7} 455

Total params: 883,005
Trainable params: 883,005
Non-trainable params: @

Fig 2.3.1: Machine Learning Model Summary



3 Results

3.1 Logic-Based Algorithm

True label

Predicted label

Fig 3.1.1: Confusion Matrix Showing the Predictions of the Logic Algorithm
Our best performing algorithm (Adaptive Mean threshold), tended to detect less targets than
what was in the image, as can be seen in Fig 3.1.1, it also had an accuracy of about 5.1% (6/118).

3.2 Machine Learning

loss
10

Loss

T T T T
0 100 200 300 400 500
Epoch

Fig 3.2 1: Graph of Categorical Cross-Entropy loss versus number of epochs

This was our Categorical cross-entropy loss graph while training the machine learning model,
where the orange line represents the loss of the validation dataset, and the blue line represents the
loss of the training dataset. There are some Epochs where the loss spikes, to about 54 (not
graphically shown due to y limit set to 0 to 10) which we would address in the discussion portion
of the paper. The training loss tends to decrease with each epoch. However, the validation loss

stayed relatively constant from epoch 80 to 230, after which the validation loss increased with
each epoch, which suggests overfitting.



Categorical Accuracy

0.8 1

0.6 1

Accuracy

0.2 1

8]

0.0 4

Mt f)!,"“f'i”‘] *

T T T T
1] 100 200 300 400 500
Epoch

Fig 3.2.2: Graph of Accuracy Over Number of Epochs

With enough training, the training accuracy eventually reaches close to 100%, while the
validation accuracy hovers around between 18% to 30%. Notably, the validation accuracy peaks
close to 40%, at around epoch 165. This accuracy trend suggests some sort of overfitting.

To evaluate the performance of the model on the test set, we load the weights which yielded the
best accuracy on the validation set. The evaluation is shown in the form of the confusion matrix
in Fig 3.2.3, and the resultant accuracy is 34.7%.

True label

0 1 2 3 4 5
Predicted label

Fig 3.2.3: Confusion Matrix of Test Set for Machine Learnin

4 Discussion

4.1 Loss for Machine Learning Algorithm



4.1.1 Loss Spike during Machine training

When compiling the machine before training, we used a tensorflow inbuilt optimizer “Adam”,
which is a comprehensive optimizer for machine learning algorithm [3], where it is
recommended for use for most machine learning algorithms, due to its superior experimental
performance as compared to other optimizers (SGD, RMSP, AdaGrad). However, the loss spike
during training could be a consequence of Mini-Batch Gradient Descent with the Adam
optimizer, where some batches of data may have unlucky data, by chance [4], which would
cause the loss spikes we see in Fig 3.2.1.

4.1.2 Loss while Training the Machine Learning Model

With reference to Fig 3.2.1, our loss graph while training the machine learning model generally
decreased with training, from about 3 to 0.145. However, the validation loss is increasing, from 3
to about 5. This signifies some form of overfitting, where the model remembers the training
dataset, rather than learning the patterns in it. Although different techniques have been used to
combat this problem, such as using class weights, which we calculated using the formula
wj=n_samples / (n_classes * n_samplesj), [S] where wj signifies the weight for that class,
n classes signifies the number of classes, and n_samplesj signifies the number of samples in a
specific class. We had also included dropout layers to combat overfitting. However, overfitting of
our dataset still occurred, and this could be attributed to the imbalance of our data, as well as our
small dataset size.

4.2 Comparing Accuracy of Target Detection Between the Machine Learning Model and
Logic-Based ALgorithm

When we compare the accuracy of the machine learning model versus the logic-based
thresholding algorithm, against the same dataset size, the machine learning model would have a
higher accuracy, of about 34.7%, as compared to logic’s lower accuracy of 21%, when using the
adaptive mean thresholding method. Such low accuracies could be in part due to the nature of
our dataset, which was very unbalanced, and of a very small size (831 samples in total). This
could have affected the performance of our model, where the training of the model on a smaller
dataset, could have caused less patterns to be recognised. [6] In the case of the logic algorithm,
more thresholding methods could have been explored, to fine tune the algorithm better.

However, with the accuracy of the machine learning model being greater than the logic’s
accuracy, from our results, it can be said that the machine learning model would be better suited
for target detection. This would be due to the nature of machine learning, where it leverages data
to improve performance on this set of tasks, target detection.

4.3 Logic-Based Algorithm Accuracy

While obtaining results for the mean accuracy of each threshold method, we realised that the
logic-based algorithm tended to misreport the targets, where the target that was identified by the
threshold would not be an actual target in the scene. An example of this can be seen in Fig 2.2.2,
where a target is correctly highlighted, whereas the other target that is highlighted is not an actual
target in the scene itself.



The logic-based algorithm typically under-detected the number of targets in each picture. This
could be due to the fact that the ground truth was taken from the dataset provider, rather than
being based off the RD map. The RD maps occasionally had anomalies such as the ground truth
being 2 when the RD map had 4 visible targets, or the ground truth being 2 when the RD map
had only 1 visible target. This could be due to issues with the data collection or radar hardware
problems that detected false targets. An example of this will be shown in Fig 4.3.1.

import pandas as pd

e e L e e

-

2 X groundtruth = pd.read_pickle("/content/drive/MyDrive/groundtruth,/868652.pickle™)
’i;,[b“ print("Number of targets in scene: ", str({len{groundtruth["classes"])))

i

Mumber of targets in scene: 4

Fig 4.3.1: Image with 2 Targets Detected / Visible. but with 4 Targets in the Groundtruth

5 Conclusions

5.1 Limitations

Some limitations of our project include the type of input data used and dataset limitations. As for
the type of input data, we plotted the RD map from the raw data rather than using the raw data,
which could have resulted in discrepancies in our findings. For limitations of our dataset, it was
greatly imbalanced, as seen in Figure 2.1.3. Class 2, the class with the highest number of samples
had 248 samples, while Class 6, the class with the lowest number of samples, had less than 10.
Class weights were added to the machine learning algorithm to mitigate this issue, however the
imbalanced dataset could have still affected our results greatly. Furthermore, our dataset had a
maximum of 7 targets in the scene, whereas during actual deployment more targets can be
present in a singular scene, resulting in discrepancy in our findings when it comes to actual
deployment.

Secondly, another limitation would be the labelling of our dataset. We took a more unbiased
approach to data labelling as the labels came solely from the ground truth, with no reference to
the RD map. However, some RD maps would have 2 visible targets, but have a ground truth of 4
targets, such as in Fig 4.3.1. This may have caused discrepancies in the machine learning’s
training and subsequent predictions on the test dataset, as well as discrepancies in the number of
targets detected versus the ground truth.

Lastly, our logic-based algorithm did not take into account the ground truth coordinates of the
targets in the images. Hence, the algorithm may have detected clutter or noise as targets, rather
than actual targets in the scene. This could result in wrong conclusions as the performance of the



thresholding algorithm was evaluated by taking the mean accuracy of the algorithm across
images, without taking into account that the targets detected may not have been actual targets in
the scene.

5.2 Future Directions

Future projects could address the data imbalance problem by utilising more data or utilising a
dataset captured over a longer period of time, on a busier road, e.g. the highway so as to address
the limitation of our dataset imbalance, as well as the limited variety of the number of targets in
the scene.

Additionally, future projects could also look into the usage of different types of input data, such
as using raw data instead of an RD map. Future projects could also change the calculation of the
mean accuracy. Rather than using the number of targets detected to calculate the mean
percentage accuracy, the mean percentage accuracy calculation could also take into account
whether the detected targets are targets present in the scene.

Furthermore, our project focuses on machine learning applications in target detection, however
machine learning applications in the rest of the radar signal processing chain, such as target
estimation, identification and classification, could also be further looked into, where machine
learning could be used to classify different types of targets.

6 Acknowledgements

We would like to acknowledge the efforts of our mentors, Yan Jun and Angel, for providing
guidance and technical support throughout the project. We would also like to thank Chester Tan
Wei Jie, who although is not our designated mentor, still provided us with extensive technical
support throughout the project.

7 References

[1] Ao Zhang. (2021, May 2). RADDet. GitHub. https://github.com/ZhangAoCanada/RADDet
[2] OpenCV. (n.d.). OpenCV: Miscellaneous Image Transformations. Docs.opencv.org. Retrieved
December 30, 2022, from
https://docs.opencv.org/4.x/d7/d1b/group _imgproc misc.html#ggaa42a3e6ef26247da787bf34
030ed772caf262a01e7a3f112bbab4e8d8e28182dd

[3] Ajagekar, A. (n.d.). Adam - Cornell University Computational Optimization Open Textbook -
Optimization Wiki. Optimization.cbe.cornell.edu. Retrieved December 30, 2022, from
https://optimization.cbe.cornell.edu/index.php?title=Adam

[4] neural networks - Explanation of Spikes in training loss vs. iterations with Adam Optimizer.
(2018, September 21). Cross Validated.
https://stats.stackexchange.com/questions/303857/explanation-of-spikes-in-training-loss-vs-iterat
ions-with-adam-optimizer

[5] Singh, K. (2020, October 6). How to Improve Class Imbalance using Class Weights in
Machine Learning. Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2020/10/improve-class-imbalance-class-weights/

[6] Barman, R. (2019). Transfer Learning for Small Dataset Cloud Infrastructure Management
View project Classification of text based complaints using NLP and Neural Network View
project Anita Patil P K Technical Campus.

10



